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1 INTRODUCTION
Programming languages are designed with very different goals in mind. Some languages (OCaml,

Python, ...) are very good for higher-level programs where we can abstract some details of imple-

mentation like memory management, while some other languages (C, Ada, ...) are more adequate

to implement program where performance is crucial. To be able to work with the best of both

worlds, a solution is often to combine multiple languages within a same project, combined and

linked under a single binary. This language interoperability strategy relies on a foreign function
interface (FFI): this is the way a language exposes itself to the outside world, a specification on how

to properly communicate.

In the UNIX world, it is often required to be able to communicate with C code to be able to

perform system calls. A lot of popular libraries are also implemented in C. Most of language

interoperability is therefore done between C and another language.

In this work, we are particularly interested in the OCaml and C FFI. Combiningmultiple languages

together can be very tricky. An important difficulty come from the fact that OCaml memory is

managed automatically, with a garbage collector (GC). Since the memory is shared across all

languages we work with, we need to be careful about correctly communicating our memory needs

to the garbage collector. In OCaml, this is done through a process called rooting, which is explained

in Section 2. The FFI provides us different mechanisms to use these roots which can be more or

less easy to use. The easiest and most commonly used mechanism is local roots, which are roots

local to a function. Melocoton currently has no support for this mechanism, and instead only relies

on program wide global roots. A presentation of the OCaml FFI and its associated difficulty can be

found in Section 2.

Formal methods have been used to guarantee the correctness of a program for a long time, but

reasoning on programs which combine multiple languages is a relatively new topic. Melocoton[1] is

a very recently published state of the art framework to prove that a program written in the OCaml

and C FFI is correct. It is implemented in the Iris[5] separation logic[8] framework. An overview is

presented in Section 3, with more details being available in Johannes Hostert master’s thesis [3].

The main selling point of the Iris framework is the clear separation between language semantics

and the reasoning rule used in proofs to prove properties about them. Adding a new feature to

Melocoton is therefore split into three parts:

(1) Extending the semantics of a language with the new features

(2) Extending the reasoning rules to use our new feature in proofs

(3) Proving in Coq that the reasoning rules correctly represent the underlying semantics
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When extending the reasoning rules, an important difficulty is the preservation of language local

reasoning. Since we are working of formalising multiple languages which need to work together,

we want to be able to reason about a program in OCaml without having to think about C and

the FFI. Likewise, we want to be able to prove properties of a purely C part of a program without

having to take care of the FFI. We therefore need to carefully choose how we extend the reasoning

rules to do so.

We present Melocoton-local, an extension of Melocoton with support for local roots. Code can be

freely accessed at https://github.com/logsem/melocoton on various branches. The full contribution

of this work consists of:

• Boxed integers, explained in Section 4. They are an extension of the ML language supported

by Melocoton which allows the use of types in the standard library such as Int64.t,
Int32.t or NativeInt.t or They have been merged into the main branch of Melocoton.

• Local C variables, explained in Section 5.1. They can be seen in the c_local branch.

• Local roots for the garbage collector, explained in Section 5.2. They can be seen in the

local_roots branch.

2 BACKGROUND: INTEROPERABILITY BETWEEN OCAML AND C
2.1 Simple example
As an introduction to the OCaml FFI, we present minitime, a simplified form of the gmtime function
from the Unix module of the standard library. The gmtime function takes a floating point value

representing the time elapsed since the Unix Epoch, and returns a structure containing a human

readable date and time.

Our simplified version takes as input an Int64 and only returns the corresponding minute and

hour. Its implementation can be found in Figure 1. It closely resembles the one of Unix.gmtime in

the standard library.

Writing code in the OCaml and C requires three different kind of codes. We first have OCaml code,

where we declare our type and the signature of the function we want to create. In our example, we

have the type time, and an OCaml function minitime. We declare the function using the external
keyword and associate it to the caml_minitime symbol. This symbol corresponds to the C function

in minitime.c. It is written in the second kind of code, glue code. Like its name suggests, its goal is

to glue code written in the two other languages, pure C and OCaml. It is only a wrapper around
another external minitime pure C function which does the actual computations. This glue code has

access to special functions and macros which are part of the OCaml FFI (CAMLparam1, CAMllocal1,
caml_alloc, Int64_val, CAMLreturn, ...). We call these functions and macros primitives of the
FFI. To have a better understanding of how they work, we first need to understand OCaml and C

memory models.

2.2 Same memory, different models
When we work with language interoperability, very different languages need to be able to com-

municate to perform computations. The same data could be encoded in different ways from one

language to another. This is the case with OCaml and C. At runtime, OCaml values are either

integers or locations. A location is a pointer to a block managed by the GC. A block is a combination

of a tag, which describe the block content, and arbitrary data.

Blocks are created with the caml_alloc function. This function takes two parameters: the size

of the block and its tag. In caml_minitime, we use caml_alloc on line 4 to allocate the result

structure. We allocate a block of size 2 to be able to store our two fields min and hour, and the tag 0
to say that the block represent a structure. A structure always has tag 0. We then update the block

https://github.com/logsem/melocoton
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1 type time = {
2 min: int;
3 hour: int;
4 }
5

6 external minitime: Int64.t -> time = "caml_minitime"

minitime.ml

1 value caml_minitime(value t) {
2 CAMLparam1(t);
3 CAMLlocal1(r);
4 r = caml_alloc (2, 0);
5

6 time_t timer = (time_t) Int64_val(t);
7 struct tm *tm = minitime (&timer);
8

9 Store_field(r, 0, Val_int(tm->tm_min));
10 Store_field(r, 1, Val_int(tm->tm_hour));
11

12 CAMLreturn(r);
13 }

minitime.c

Fig. 1. Implementation of minitime

contents with Store_field. We cannot store the C integers directly. This is due to the fact that

OCaml reserves the lowest significance bit to be able to tell the difference between a location and

an integer at runtime. An OCaml integer is therefore a bit smaller than a C one. We thus need to

convert them according to our needs. We use the Val_int primitive on line 8 and 9 to transforms a

C integer into OCaml integers.

We use the Int64_val primitive on line 6 to fix a similar problem for long integers. An Int64
value is represented at runtime by an immutable foreign block. Foreign blocks are a special kind of

block which contains arbitrary data.

When working with different languages, we need to keep in mind that they operate on the same

memory. Code written in one language can modify memory which is also used by another language,

and vice versa. This is important when we consider memory which is automatically managed by a

language. One language could invalidate some memory which is still in use by another language

that hasn’t properly cooperated on its memory usage.

This is a problem faced when interfacing OCaml and C. Blocks are managed by the OCaml

garbage collector (GC). They can be moved around when it is running, for example when memory

need to be allocated. Variables storing values represented at runtime with blocks are simply pointers.

To keep them valid, they have to be updated when the block they point to is moved around by the

GC. In our example, if the t pointer is not updated, it could be invalid after the caml_alloc on line

4. When we try to use it on line 6, we will have a memory corruption bug. Since the GC behavior is

highly dependant on the current state of the program, its behavior can be quite hard to predict,

making it very hard to debug.

The OCaml mechanism for keeping locations valid is called rooting. It is done on line 2 and 3

by the CAMLparam and CAMLlocal primitives. Like their name suggests, they are use respectively
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for rooting parameters and local variables. They are a special form of roots which are local to the

function. On exit, we use the CAMLreturn primitive to unroot all of our local roots at once.

We could have used other primitives for rooting our values: global roots. Like their name

suggests, global roots are global to the whole program. We can create a global root with the

caml_register_global_root primitive. When we want to unroot them, we have to do it one

variable at a time with the caml_remove_global_root primitives.

3 BACKGROUND: FORMALISING MULTI-LINGUAL INTEROPERABILITY WITH
MELOCOTON

Interoperability between OCaml and C can be tricky, and its related bugs hard to find. To make

sure that the programs we write are bug free, we can prove their correctness in Melocoton.

Melocoton is implemented in the Iris separation-logic framework. This framework has a particular

methodology for making proofs. It distinguish clearly the operational semantics of languages and

the reasoning rules we use to prove properties about them. Reasoning rules are expressed through

separation-logic. A theorem of adequacy has to be proven so that we are sure the reasoning rules

corresponds to the operational semantics, and that the properties we can prove with them are real

properties of the program they represent.

In the context of language interoperability, Iris allows us to preserve language local reasoning.
Each one of the language we use can have a distinct operational semantics and reasoning rules.

3.1 Operational semantics
Melocoton formalizes two languages 𝜆ML and 𝜆C. To allow 𝜆ML and 𝜆C to work together, we need to

link the two languages together. We do so with a generic linking operator ⊕.
For any two languages 𝜆𝐿, 𝜆𝑅 , this linking operator allows us to create a new language 𝜆𝐿 ⊕ 𝜆𝑅 .

Any expression 𝑒 of this new language can be in two states. It is either executing in 𝜆𝐿 or in 𝜆𝑅 .

When an external call is met, the execution continues in the other language and the resulting value

is given back using continuations.

This last point may be a problem in some situations. The value given back by the execution of a

𝜆𝐿 function is a 𝜆𝐿 value. If we want to be able to use it back in a 𝜆𝑅 program, this 𝜆𝐿 value also has

to be valid in 𝜆𝑅 .

This is a problem found with 𝜆ML and 𝜆C. Instead of using 𝜆ML directly, we first put our language

into a wrapper [ − ]𝐹𝐹𝐼 . This wrapper transforms values into their lower-level runtime memory

representation. We can then create the language [𝜆ML]𝐹𝐹𝐼 ⊕ 𝜆C.
The linking operator allows having a clear separation between language. Programs can be written

purely in C or in the FFI. When we later want to prove properties on our programs, we can prove

purely C parts without having to take care about the existence of the FFI.

The [𝜆ML]𝐹𝐹𝐼 wrapped language not only transforms values into their underlying memory

representation but also models the entirety of the OCaml runtime. Its syntax and semantics are

given in Figure 2. It notably contains the different primitives which are made available when using

the FFI such as Val_int, and the current state of the garbage collector. The values 𝑙𝑣 of the wrapper
are not directly C values, even though they could be mapped one to one to a C value𝑤 as either an

integer 𝑛 or a pointer 𝑎. This is because we need to account for the garbage collector. We don’t

care about the exact location of our variable in the memory, but only their logical location. They
could be moved around, but as long as they are rooted we don’t care. Logical locations are mapped

to the memory using the address map 𝜃 . When performing an allocation using CAMLalloc, this
logical map is non-deterministically changed to represent the possible movement of our blocks. We
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use the notation 𝜃 to represent the map 𝜃 where keys are unchanged but values could be anything.

Since all possible maps have to be valid, we have to rely on demonic non-determinism.

The wrapped language can be in two states: either executing ML code or wrapped C code. When

executing ML code, the C memory𝑚𝑒𝑚 still exists but is inaccessible.

𝑙𝑣 ∈ LVal ::= 𝑛 ∈ N | 𝛾 ∈ LLoc
𝑚 ∈ Mutability ::= mut | imm

𝑏 ∈ Block ::= VBlock(𝑚, 𝑡𝑎𝑔, 𝑙𝑣𝑠 ∈ List(LVal)) | Closure(𝑥1, 𝑥2, 𝑒) | Foreign(𝑤)
𝜁 ∈ BlockStore ≜ LLoc ⇀ Block

𝜒 ∈ LocMap ≜ LLoc ⇀ Loc

𝜃 ∈ AddrMap ≜ LLoc ⇀ Addr

𝑟𝑚 ∈ RootsMap ≜ Addr ⇀ LVal

𝜌 ∈ State ::= ML((𝜁 , 𝜒, 𝑟𝑚,𝑚𝑒𝑚), 𝜎) | C((𝜁 , 𝜒, 𝜃, 𝑟𝑠),𝑚𝑒𝑚)
RegisterS

𝑎 ∉ 𝑟𝑠 𝑟𝑠′ = 𝑟𝑠 ∪ {𝑎}
CAMLregister(𝑎),C((𝜁 , 𝜒, 𝜃, 𝑟𝑠),𝑚𝑒𝑚) →𝐹𝐹𝐼 0,C((𝜁 , 𝜒, 𝜃, 𝑟𝑠′),𝑚𝑒𝑚)

UnregisterS

𝑎 ∈ 𝑟𝑠 𝑟𝑠′ = 𝑟𝑠 \ {𝑎}
CAMLunregister(𝑎),C((𝜁 , 𝜒, 𝜃, 𝑟𝑠),𝑚𝑒𝑚) →𝐹𝐹𝐼 0,C((𝜁 , 𝜒, 𝜃, 𝑟𝑠′),𝑚𝑒𝑚)

AllocS

𝜃 ′ = 𝜃 [𝛾 ↦→ 𝑎] 𝜁 ′ = 𝜁 [𝛾 ↦→ VBlock(𝑚𝑢𝑡, 𝑡𝑎𝑔, [0, ..., 0])] ∀𝑖 ∈ {0, ..., 𝑠𝑖𝑧𝑒},𝑚𝑒𝑚′ [𝑎+𝑙𝑖] = 0

CAMLalloc(𝑡𝑎𝑔, 𝑠𝑖𝑧𝑒),C((𝜁 , 𝜒, 𝜃, 𝑟𝑠),𝑚𝑒𝑚) →𝐹𝐹𝐼 𝑎,C((𝜁 ′, 𝜒 ′, 𝜃 ′, 𝑟𝑠),𝑚𝑒𝑚′)

Fig. 2. Syntax, state and semantics of [𝜆ML]𝐹𝐹𝐼

3.2 Reasoning in Melocoton program logic: A blueprint for proving the correctness of
minitime

We want to prove that the glue code of minitime is correct. We are only interested in proving that

the execution does not go wrong, but the correctness of the returned value is not important here. A

program does not go wrong if the rules imposed by the FFI are respected and there is no undefined

behavior.

In our example, we mostly have to check that we are rooting locations correctly. This means

that any value still in use after an allocation has to be rooted, and that we must unroot values that

we don’t need anymore. We also have to check that we are converting between values correctly.

We want to do a formal proof of correctness inside Melocoton. We do so in a language-specific

separation logic Iris[ML]𝐹𝐹𝐼 . Each language has its own separation logic. Just like we can write a

pure program in a language without having to acknowledge the existence of other languages, we

can prove properties on a pure program without having to acknowledge the existence of other

languages.

Separation logic uses resources to track the underlying state of our programs. Each resource can

be considered as providing a view of separate point the system. We can combine resources together

to gather more informations on the state of our system. We can think about the resources which

we will need to do our proof.
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We first need a way to track values stored inside variables and, more generally, resources to

track the current state of the memory. We use the notation 𝑎 ↦→𝐶 𝑤 to note that a C address 𝑎

contains the value 𝑤 in memory. Specifications to use these pointers are presented in Figure 3.

Specifications uses a Hoare triple notation[2] in which every free variable is universally quantified.

The topmost brackets represent a pre-condition and the bottommost a post-condition. They are

expressed using separation logic: resources in the pre-condition are consumed. If we want to still

be able to use a resource afterwards, we have to give the resource back in the post-condition.

{ 𝑎 ↦→𝐶 𝑤 }
*𝑎

{ RET(𝑤). 𝑎 ↦→𝐶 𝑤 }

{ 𝑎 ↦→𝐶 𝑤 }
𝑎 ← 𝑤 ′

{ RET(0). 𝑎 ↦→𝐶 𝑤 ′ }

Fig. 3. Specifications for reading and writing in 𝜆C

The next thing we need is a way to track the state of the garbage collector and its roots. We use a

token GC 𝜃 , parameterized by the current logical memory state 𝜃 . In our function code, we use two

primitives CAMLparam and CAMLlocal to root local variables. They both take as a parameter a C

pointer and root them. The rooting mechanism takes a valid OCaml value and assert that this value

will remain valid as long as it is rooted. We can model this as an exchange: We are exchanging our

weak C pointer to a block which we know is valid at the moment of the swap for a stronger root

pointer which will remain valid until unrooted.

We know that a C value𝑤 is valid if there is a possible corresponding block level value 𝑙𝑣 in the

current logical memory state 𝜃 . We use the following notation:

𝑤 ∼𝜃 𝑙𝑣

We can also say that this block level representation 𝑙𝑣 could represent the OCaml value 𝑣 with the

notation:

𝑤 ∼𝜃 𝑙𝑣 ∼ 𝑣

Note that the same runtime value could represent different OCaml values.

Once a pointer is rooted, the exact position of the pointed block in the memory can be abstracted

away. We use a new resource 𝑎 ↦→root 𝑙𝑣 , and the associated specification presented in Figure 4.

{ GC 𝜃 ∗ 𝑎 ↦→root 𝑙𝑣 }
*𝑎

{ RET(𝑙𝑣). GC 𝜃 ∗ 𝑎 ↦→root 𝑙𝑣 }

{ GC 𝜃 ∗ 𝑎 ↦→root 𝑙𝑣 ∗ ⌈ 𝑤 ∼𝜃 𝑙𝑣 ′ ⌉ }
𝑎 ← 𝑤

{ RET(0). GC 𝜃 ∗ 𝑎 ↦→root 𝑙𝑣
′ }

Fig. 4. Specification for reading and writing to root pointers in [𝜆ML]𝐹𝐹𝐼

Both primitives can be modeled as a single CAMLregister primitive. Inverting it gives us the

CAMLunregister primitive. Specifications for both of these primitives can be found in Figure 5. We

use the separating conjunction 𝐴 ∗ 𝐵 to mark the fact that 𝐴 and 𝐵 are separated assertions, which

talk about separated part of our system. Logical fact which does not talk about any resources are

presented using the notation ⌈ 𝐴 ⌉. They are said to be pure statements, which will always be true

no matter the current state of the system.

Allocating new blocks is done through the CAMLalloc primitive. We present its specification in

Figure 6. Allocating a new block modify the parameter 𝜃 of the GC token, transforming it into a
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{ GC 𝜃 ∗ 𝑎 ↦→𝐶 𝑤 ∗ ⌈ 𝑤 ∼𝜃 𝑙𝑣 ⌉ }
CAMLregister(𝑎)

{ RET(0). GC 𝜃 ∗ 𝑎 ↦→root 𝑙𝑣 }

{ GC 𝜃 ∗ 𝑎 ↦→root 𝑙𝑣 }
CAMLunregister(𝑎)

{ ∃𝑤 RET(0). GC 𝜃 ∗ 𝑎 ↦→𝐶 𝑤 ∗ ⌈ 𝑤 ∼𝜃 𝑙𝑣 ⌉ }

Fig. 5. Specification for the CAMLregister and CAMLunregister primitive

{ GC 𝜃 ∗ 𝑎 ↦→𝐶 𝑤 ∗ ⌈ 𝑤 ∼𝜃 𝑙𝑣 ⌉ }
CAMLregister(𝑎)

{ RET(0). GC 𝜃 ∗ 𝑎 ↦→root 𝑙𝑣 }

{ GC 𝜃 }
CAMLalloc(𝑡𝑎𝑔, 𝑠𝑖𝑧𝑒)

{ ∃𝜃 ′, 𝛾,𝑤 RET(𝑤). GC 𝜃 ′ ∗ 𝛾 ↦→blk VBlock(𝑡𝑎𝑔, [0, ...0]) ∗ ⌈ 𝑤 ∼𝜃 𝑙𝑣 ⌉ }

Fig. 6. Specification for the CAMLalloc

new state 𝜃 ′. All facts of the form𝑤 ∼𝜃 𝑙𝑣 are therefore made useless, since we cannot use them

together with the token GC 𝜃 ′.
We cannot express the specification of caml_minitime in Melocoton. This is due to the fact that

caml_minitime takes as a parameter an Int64 value, which is not implemented in Melocoton. We

will see how to do it in Melocoton-local instead.

4 ADDING BOXED INTEGERS TO MELOCOTON
The first thing we need which is missing from Melocoton is Int64 values. In OCaml, Int64, Int32
and NativeInt are boxed. This means that they are represented at runtime as immutable foreign

blocks. We must box them because they cannot fit inside a standard OCaml integers, due to the

reserved bit mentioned in Section 2. In this section, we present how we add boxed integers to

Melocoton-local.

𝑣 ∈ Val ::= 𝑛 ∈ N | ℓ ∈ Loc | 𝑓 ∈ rec 𝑓 𝑥 . 𝑒 | inl 𝑣 | inr 𝑣 | () | ⟨𝑣, 𝑣⟩
𝑒 ∈ Expr ::= 𝑣 | 𝑥 ∈ Var | ⟨𝑒, 𝑒⟩ | inl 𝑒 | inr 𝑒 | •𝑒 | 𝑒0 ⊗ 𝑒1 | 𝑒0 (®𝑒)

| if 𝑒0 then 𝑒1 else 𝑒2 | fst 𝑒 | snd 𝑒
𝜎 ∈ State ≜ Loc ⇀ 𝑣 ⊎  

Fig. 7. Syntax and state of 𝜆ML

The 𝜆ML language is described in Figure 7. It is a standard expression based functional program-

ming language. We extend 𝜆ML_local from 𝜆ML with a new kind of values 𝑛 ∈ N representing boxed

integers. We also extend the semantics of the various operators to work on boxed integers. We use

boxed integers in 𝜆ML_local exactly the same way we would use regular integers. Since both are

represented using natural numbers, they can both hold numbers of any size. The main difference is

reasoning rules about them, and which primitive we need to use in our programs.

We then need to extend the wrapper to model the runtime representation of our new values.

Boxed integers are represented at runtime as immutable foreign blocks. While [𝜆ML]𝐹𝐹𝐼 contains
a notion of foreign blocks, they can only be considered mutable. We therefore extend them in

Melocoton-local with the notion of mutability, as presented in Figure 8.
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𝑏 ∈ Block ::= VBlock(𝑚, 𝑡𝑎𝑔, 𝑙𝑣𝑠 ∈ List(LVal)) | Closure(𝑥1, 𝑥2, 𝑒) | Foreign(𝑚,𝑤)

Fig. 8. Extension of blocks in Figure 2 for Melocoton-local

We can then extend the ml representation inductive:

𝜁 [𝛾] = Foreign(𝑖𝑚𝑚,𝑛) ⇒ 𝛾 ∼ 𝑛

Lastly, we need to be able to actually use our BoxedInt within C code. We need to be able to read

and create them. This first need can be satisfied by using the CAMLreadforeign primitive. To create

them, we can manually allocate a new foreign block with CAMLalloccustom, set it’s content with
CAMLwriteforeign and then return it. All of these primitives are already part of the semantics of

Melocoton.

The second step in adding a new feature to Melocoton is extending the language-specific separa-

tion logic. We therefore extend Iris[ML]𝐹𝐹𝐼with new reasoning rules on boxed integers.

As mentioned, boxed integers are represented at runtime with foreign immutable blocks. We need

to correctly respect the semantics associated with immutability in OCaml. This means that, when

we expose a foreign block from C to OCaml, we need to provide a guarantee that we won’t change

the content of the block. We implement it in our separation-logic by exchanging our strong pointer

to a block for a weaker one which doesn’t allow modifications. This rule is not a specification,

but only an exchange. We can use it whenever we want in a proof, and we don’t have to insert a

particular freezing expression in our program. It is presented with the separation-logic implication

𝐴 −−∗ 𝐵, which means we can exchange the resource A against the resource B. Specifications and

rules associated to immutability and foreign blocks are presented in Figure 9. They use a new

resource 𝛾 ↦→foreign[m] 𝑤 to express the fact that a logical location 𝛾 points to a foreign block with

mutability𝑚 containing the C value𝑤 .

GC 𝜃 ∗ 𝛾 ↦→foreign[mut] 𝑤 −−∗ GC 𝜃 ∗ 𝛾 ↦→foreign[imm] 𝑤

{ GC 𝜃 }
CAMLalloccustom()

{ ∃𝑎, RET(𝛾). GC 𝜃 ∗ 𝛾 ↦→foreign[mut] 𝑤 }

{ GC 𝜃 ∗ 𝛾 ↦→foreign[m] 𝑤 }
CAMLreadforeign(𝛾)

{ RET(𝑤). GC 𝜃 ∗ 𝛾 ↦→foreign[m] 𝑤 }

{ GC 𝜃 ∗ 𝛾 ↦→foreign[mut] _ }
CAMLwriteforeign(𝛾, 𝑎)

{ RET(𝑤 ′). GC 𝜃 ∗ 𝛾 ↦→foreign[mut] 𝑎 }

Fig. 9. Specifications for interacting with foreign blocks in Melocoton-local

With these new resources, we can finally propose a first specification of caml_minitime in

Figure 10. However, we will not be able to do the full proof of correction, because the body of the

function uses primitives related to local roots which are unimplemented in Melocoton.

5 ADDING LOCAL ROOTS FOR THE GARBAGE COLLECTOR
We want to add local roots to Melocoton-local. Local roots relies on the use of local C variables,

which are both unrooted and freed at function exit. We therefore start by adding local C variables

to Melocoton-local.
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{ GC 𝜃 ∗ ⌈ 𝑙𝑣 ∼ 𝑛 ⌉ }
caml_minitime(𝑙𝑣)

{ ∃ 𝑙𝑣 ′ 𝑣1 𝑣2, RET(𝑙𝑣 ′). GC 𝜃 ′ ∗ ⌈ 𝑙𝑣 ′ ∼ ⟨𝑣1, 𝑣2⟩ ⌉ }

Fig. 10. First proposal for a caml_minitime specification

5.1 Local variables

• ∈ Uop ::= − | ¬ | ∼ | (int) | (void*)
⊗ ∈ Bop ::= + | − | × | ÷ | % | & | | | ^ | << | >> | ≤ | < | = | +𝑙 | -𝑙

𝑤 ∈ Word ::= 𝑛 ∈ N | 𝑎 ∈ Addr | 𝑓 ∈ Fun
𝑒 ∈ Expr ::= 𝑤 | 𝑥 ∈ Var | let 𝑥 = 𝑒0 in 𝑒1 | *𝑒 | 𝑒0 ← 𝑒1 | malloc(𝑒) | free(𝑒0, 𝑒1)

| •𝑒 | 𝑒0 ⊗ 𝑒1 | if 𝑒0 then 𝑒1 else 𝑒2 | while 𝑒0 do 𝑒1 | 𝑒0 (®𝑒)
mem ∈ State ≜ Addr ⇀ 𝑤 ⊎ { ,★}

LetS

let 𝑥 = 𝑤 in 𝑒, mem→𝐶 𝑒 [𝑥 ← 𝑤], mem

StoreS

𝑎 ∈ dom(mem)
𝑎 ← 𝑤, mem→𝐶 0, mem[𝑎 ↦→ 𝑤1]

MallocS

∀i∈{0,...,n}, 𝑎+𝑙i ∉ dom(mem)
malloc(𝑛), mem→𝐶 𝑎, mem[𝑎 ↦→ ★]

FreeS

∀𝑖∈{0,...,n}, 𝜎 [𝑎+𝑙i] ∈ Word ⊎ {★}
free(𝑎, 𝑛), mem→𝐶 0, mem[∀𝑖∈{0,...,n}a+𝑙𝑖 ↦→  ]

LoadS

𝑎 ∈ dom(mem)
*𝑎, mem→𝐶 mem[𝑎], mem

Fig. 11. Syntax, state and semantics of 𝜆C

We want to extend 𝜆C to a new language 𝜆C_local with proper support for local variables. The

𝜆C language is a standard expression based language. Its syntax, state and partial semantics are

presented in Figure 11. When we want to use a local variable, we can use two different constructions.

If we want to use a simple variable which will only be initialised once and never modified, we can

use a let binding. Variables which need to be modified after their creations have to be implemented

by the user with a memory allocation at the beginning of the function and a free on exit. Memory

allocations are done through the malloc(n) expression. It takes as a parameter an integer value 𝑛

representing the size of the memory to allocate and return a pointer 𝑎 to a new memory area. We

can use the pointer offset operator +𝑙 to access each memory cell from the 𝑎 pointer. When freshly

allocated, cells are marked allocated but uninitialised with the star symbol ★.

When we don’t have any more use for our memory, we can free it using the free(a, n) expression.
The memory cells are marked freed with the lightning symbol  , and cannot be used anymore.

If we want to modify a variable content with a new value𝑤 , we have to update the corresponding

memory 𝑎 with a store 𝑎 ← 𝑤 . We can read back the value with a memory load *𝑎.
This process is very cumbersome. It has two main drawbacks:
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(1) We have to manually insert free and allocations. It is possible to forget to free a local C

variable and get a correct C program which would be different from the one we want to

prove.

(2) Having to do one allocation per each local variable can make our proofs harder to write

and to check in an automated prover like Coq.

We start by fixing the first drawback by automating the memory allocation and freeing for local

variables. We proceed by doing a simple syntactic check for possibly mutated local variables when

we enter a function. A variable is considered possibly mutated if we take its address using the

unary operator &, which is new in 𝜆C_local. The C instruction 𝑥 = 𝑦, where 𝑥 is a variable name

and 𝑦 an expression, is translated into 𝜆C as &𝑥 ← 𝑦.

For each possibly mutated variable found, we simply insert the corresponding malloc and free.
If a variable is not mutated, we use a simple let bindings.

Fixing the second drawback can be similar to encoding a compiler optimisation inside of our

semantics. A C compiler will insert a single allocation for a memory area which can fit every local

variables. The pointer to this memory area is called the frame pointer, or 𝑓 𝑝 . Each local variable

will then be mapped to a unique offset from the frame pointer. When we exit the function, we can

free all of the memory taken up by local variables by freeing the frame pointer.

The frame allocation is handled by a new expression alloc_frame(𝑓 ) in e, whose semantics is

presented in Figure 12. It takes as a parameter a frame f, which is the list of variable that should be

allocated, and an expression e in which the frame should be allocated.

AllocFrameS

𝑒′ = 𝑒 [&𝑥𝑖 ← 𝑓 𝑝+𝑙𝑖, 𝑥𝑖 ← *(𝑓 𝑝+𝑙𝑖)] ∀i∈{0,...,n}, (𝑓 𝑝+𝑙i) ∉ dom(mem)
alloc_frame( ®𝑥) in e, mem→𝐶 𝑒′; free(𝑓 𝑝, 𝑛), mem[𝑓 𝑝+𝑙𝑖 ↦→ ★]

Fig. 12. Semantics of alloc_frame in 𝜆C_local

This expression is not meant to be used directly by the user, but is inserted automatically on

each function call by the aforementioned syntactic check. We have to be a bit careful. When doing

the syntactic check, we must assert that we are not allowing incorrect behavior. We have three

things to check:

(1) No variables should share the same name. This would cause a problem of capture in the

substitution of addresses.

(2) A variable shouldn’t be used before it is declared.

(3) There should be no frame allocation in the body of the function.

An advantage of modeling local variables the way we did is that we don’t have to extend the

separation logic IrisC at all. Existing reasoning mechanisms are enough to fully use them. The only

thing we need is a rule wp_allocframe for the weakest precondition of our new expression.

5.2 Operational semantics of local roots
With these new C local variables in our hand, we now have all the cards required to add our local

roots. In Melocoton, global roots are tracked as a set of addresses 𝑟𝑠 . We want to be able to associate

to each function frame the roots they track, while being able to quickly remove the set containing

the roots of the last frame when doing a return. The natural data structure to represent frames is

therefore a simple list. In Melocoton-local, we therefore represent roots as a list of set of addresses

𝑟𝑠𝑠 , which we call the root stack frame. Each element of the list corresponds to a different frame,

with the top-most frame at the beginning of the list. Allocating a new frame is done with the
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new CAMLinitlocal primitive. It simply pushes an empty set on top of the root stack frame. We

can register a new address a to the top-most frame with CAMLregisterlocal(a). When exiting a

function, we can free the top-most frame with CAMLunregisterlocal.
The last element of the roots list correspond to global roots. We consider them as a special form

of local roots which live in a function frame only exited on program exit. This allows treating roots

in a simple uniform way. We therefore also need to change the global rooting mechanism. The

CAMLregister and CAMLunregister primitives simply always act on the last element of the root

list.

The semantics for each one of our new primitives and the extended state of the wrapper can be

found in Figure 13.

𝑟𝑚𝑠 ∈ List(𝑅𝑜𝑜𝑡𝑠𝑀𝑎𝑝) 𝑟𝑠𝑠 ∈ List(𝑅𝑜𝑜𝑡𝑠𝑆𝑒𝑡)

𝜌 ∈ State ≜ ML((𝜁 , 𝜒, 𝑟𝑚𝑠,𝑚𝑒𝑚), 𝜎) | C((𝜁 , 𝜒, 𝜃, 𝑟𝑠𝑠),𝑚𝑒𝑚)

RegisterS

𝑟𝑠𝑠 = 𝑙𝑜𝑐𝑎𝑙𝑠 ++ [𝑔𝑙𝑜𝑏𝑎𝑙] 𝑎 ∉ 𝑔𝑙𝑜𝑏𝑎𝑙𝑠 𝑟𝑠𝑠′ = 𝑙𝑜𝑐𝑎𝑙𝑠 ++ [𝑔𝑙𝑜𝑏𝑎𝑙 ∪ {𝑎}]
CAMLregister(𝑎),C((𝜁 , 𝜒, 𝜃, 𝑟𝑠𝑠),𝑚𝑒𝑚) →𝐹𝐹𝐼 0,C((𝜁 , 𝜒, 𝜃, 𝑟𝑠𝑠′),𝑚𝑒𝑚)

UnregisterS

𝑟𝑠𝑠 = 𝑙𝑜𝑐𝑎𝑙𝑠 ++ [𝑔𝑙𝑜𝑏𝑎𝑙] 𝑎 ∈ 𝑔𝑙𝑜𝑏𝑎𝑙𝑠 𝑟𝑠𝑠′ = 𝑙𝑜𝑐𝑎𝑙𝑠 ++ [𝑔𝑙𝑜𝑏𝑎𝑙 \ {𝑎}]
CAMLunregister(𝑎),C((𝜁 , 𝜒, 𝜃, 𝑟𝑠𝑠),𝑚𝑒𝑚) →𝐹𝐹𝐼 0,C((𝜁 , 𝜒, 𝜃, 𝑟𝑠𝑠′),𝑚𝑒𝑚)

InitLocalS

CAMLinitlocal(),C((𝜁 , 𝜒, 𝜃, 𝑟𝑠𝑠),𝑚𝑒𝑚) →𝐹𝐹𝐼 0,C((𝜁 , 𝜒, 𝜃, ∅ :: 𝑟𝑠𝑠),𝑚𝑒𝑚)

RegisterLocalS

𝑟𝑠𝑠 = 𝑙𝑜𝑐𝑎𝑙 :: 𝑜𝑡ℎ𝑒𝑟 𝑎 ∉ 𝑙𝑜𝑐𝑎𝑙 𝑟𝑠𝑠′ = (𝑙𝑜𝑐𝑎𝑙 ∪ {𝑎})++𝑜𝑡ℎ𝑒𝑟
CAMLregisterlocal(𝑎),C((𝜁 , 𝜒, 𝜃, 𝑟𝑠𝑠),𝑚𝑒𝑚) →𝐹𝐹𝐼 0,C((𝜁 , 𝜒, 𝜃, 𝑟𝑠𝑠′),𝑚𝑒𝑚)

UnregisterLocalS

𝑟𝑠𝑠 = 𝑙𝑜𝑐𝑎𝑙 :: 𝑜𝑡ℎ𝑒𝑟 𝑟𝑠𝑠′ = 𝑜𝑡ℎ𝑒𝑟

CAMLunregisterlocal(),C((𝜁 , 𝜒, 𝜃, 𝑟𝑠𝑠),𝑚𝑒𝑚) →𝐹𝐹𝐼 0,C((𝜁 , 𝜒, 𝜃, 𝑟𝑠𝑠′),𝑚𝑒𝑚)

Fig. 13. Extended state and semantics of Melocoton-local

5.3 Resources for local roots
We introduce three new resources to use our local roots:

(1) 𝑎 ↦→root[f] 𝑙𝑣 , a generalisation of roots pointer parameterized by the frame f in which they

live.

(2) local_roots f 𝑟𝑠 , associating a frame 𝑓 to its tracked roots 𝑟𝑠 .

(3) current_fc fc, tracking the frames currently alive At the highest level, we track which

frames are currently alive with the current_fc fc resource. It is parameterized by a list of

frame fc. We use this resources when unregistering local roots to know which frame to

destroy.
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The specification for new protocols is presented in Figure 14 using these new resources, along

with reasoning rules for using our new local root pointers. Since the local_roots f 𝑟𝑠 resources

already track the full set of variable in the frame, the user does not have to give back his roots

pointers when unregistering local roots. To make sure he will not be able to use his roots pointer

after unregistering them, we request the local roots resources when he needs to use them.

{ GC 𝜃 ∗ 𝑎 ↦→root[f] 𝑙𝑣 ∗ local_roots f 𝑟𝑠 }
*𝑎

{ RET(𝑙𝑣). GC 𝜃 ∗ 𝑎 ↦→root[f] 𝑙𝑣 ∗ local_roots f 𝑟𝑠 }

{ GC 𝜃 ∗ 𝑎 ↦→root[f] 𝑙𝑣 ∗ local_roots f 𝑟𝑠 ∗ ⌈ 𝑤 ∼𝜃 𝑙𝑣 ′ ⌉ }
𝑎 ← 𝑤

{ RET(0). GC 𝜃 ∗ 𝑎 ↦→root[f] 𝑙𝑣
′ ∗ local_roots f 𝑟𝑠 }

{ GC 𝜃 ∗ current_fc fc }
CAMLinitlocal()

{ GC 𝜃 ∗ current_fc f::fc ∗ local_roots f ∅ }

{ GC 𝜃 ∗ 𝑎 ↦→𝐶 𝑤 ∗ current_fc f::fc ∗ local_roots f 𝑟𝑠 ∗ ⌈ 𝑤 ∼𝜃 𝑙𝑣 ⌉ }
CAMLregisterlocal(𝑎)

{ GC 𝜃 ∗ 𝑎 ↦→root[f] 𝑙𝑣 ∗ current_fc f::fc ∗ local_roots f (𝑎 ∪ 𝑟𝑠) }

{ GC 𝜃 ∗ current_fc f::fc ∗ local_roots f 𝑟𝑠 }
CAMLunregisterlocal()

{ GC 𝜃 ∗ current_fc fc∗𝑎∈𝑟𝑠 ∃𝑤, 𝑎 ↦→𝐶 𝑤 }

Fig. 14. Specifications for the new roots primitives of Melocoton-local

When we modeled our root pointers, we actually had a choice. We could have modeled roots as

a simple resources which would have modeled the entirety of the roots map. Specifications would

have to take the whole resource every time they need to express even the smallest properties on

roots. This would be very cumbersome and would make us loose a lot of flexibility.

A better approach is given to us by using ghost variables. In program verification, ghost variables

are a common way to track the current state of the program. We create a first resource which

simply state that there exists a roots map rm which satisfies certain conditions. This resources

assert the ownership of the roots map. It will be needed when doing modification. We then create

separate resources which gives us more information on this map. We could have a resources which

would tell us that the address 𝑎 points to the value 𝑙𝑣 , or a resource which would simply say that

the address 𝑎 is rooted. We can then create specifications which simply talks about those second

kind of resources. This choice of design gives us a lot more flexibility for proofs, by allowing us to

have more local reasoning. When we want to increase our comprehension of the whole system, we

can combine the resources together. We associate a name to each resource to know what is the

actual object that the resource is talking about.

This is exactly how roots frame pointers are implemented. The name associated to a root frame

pointer 𝑎 ↦→root[f] 𝑙𝑣 simply is 𝑓 .

Our new resources expose a new view to the programs roots. A partial view is already provided

by the GC token. We need to makes sure that all of these views are coherent. Under the hood,
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the GC token also relies on ghost variables. The ownership of the different resources is therefore

split between the GC token and our new resources. Each part of the ownership is associated to a

fraction, and we can only modify the object if we own the full fraction. We can merge and split the

ownership at will.

The last thing we want to do is proving that the exposed logic actually make sense relative

to the underlying semantics. Compared to the previous logic for boxed integers, the new logic

exposed is complex, and the proof of adequacy is harder. The difficulty of proving the adequacy is

reconciling the global view given by the operational semantics to the very local one on the resource

side. One difficulty comes from the preservation of frame across function calls. It is closely related

to well-bracketed control flows[9]. The proof is located in the interop/wp_simulation file.

5.4 Proving the correctness of minitime
With all of these new resources, we can finally express the complete specification of caml_minitime
and prove it. The specification we want to prove is presented in Figure 15. The complete proof can

be found in Melocoton in the file examples/gmtime.v.

{ GC 𝜃 ∗ current_fc fc ∗ ⌈ 𝑙𝑣 ∼ 𝑛 ⌉ }
caml_minitime(𝑙𝑣)

{ ∃ 𝑙𝑣 ′ 𝑣1 𝑣2, RET(𝑙𝑣 ′). GC 𝜃 ′ ∗ current_fc fc ∗ ⌈ 𝑙𝑣 ′ ∼ ⟨𝑣1, 𝑣2⟩ ⌉ }

Fig. 15. caml_minitime real specification

6 RELATEDWORK
Since formalising multi-lingual interoperability is a new topic, related works are sparse. Most

of the related works are related to the formalisation of local C variables. Comcert[7] provide a

formalisation of the C standard. It is implemented in Coq but not using separation-logic. The C
standard formalised in Coq[6] is implemented in Coq using separation logic. Its implementation is

more robust than the one provided in this work, having support for combinations of local variables

with non-local control flows such as goto. They are implemented using Huet’s Zipper [4]. It differs

from this work by the simplicity of implementation. The focus of this work being local roots, we

chose to use a representation which would be easy to implement without having to do complex

proofs and deep changes on how resources are implemented.

7 FUTUREWORK
In parallel of this work, a proposition for adding exceptions toMelocoton has beenmade. Combining

local roots with complex control flows such as this one can be difficult. Raising an exception means

an early return of a function frame which still need to be de-allocated, both in the memory and in

the roots. A difficulty could come from the current implementation of the C function frames. The C

semantics currently does not track it’s frames. We could fix this by reworking the implementation

of C local variables, adding a form of stack to the C state which would be tracked by the semantics

and where we could easily free the top frame. Its implementation could be similar to the one given

for local roots.

This implementation could also fix another minor problem: roots frame leak. There is currently

a strong distinction between the roots frame and the local variable frame. Nothing forbids us in the

semantics to register a root without properly initialising a new root frame first. We chose to ignore

this problem as programs which does not properly initialise their frame cannot be expressed in
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a real FFI program, as they would be compile time errors. We also cannot prove any properties

of such program with our rules, because we force that any function returns the local roots frame

untouched, and we cannot unregister a single roots from the roots frame.
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